首页 >> 科研前线 >>PEA植物效率分析仪 >> OJIP曲线和JIP-test在植物干旱胁迫研究中的应用
详细内容

OJIP曲线和JIP-test在植物干旱胁迫研究中的应用

欢迎关注「汉莎科学仪器」微信公众号!

1603329205740968.png

1 总述

干旱胁迫对植物光合效率产生负面影响,干扰气孔功能,影响同化物质的积累和运输[1,2,3,4,5]。植物受到干旱胁迫会激活各种机制避免缺水造成的负面影响[6,7]。缺水限制了植物碳代谢和光反应产物的利用,使得大量吸收的光能不能被转化为化学能,从而导致PSⅡ受到破坏[3,8,9,10]。此外水分限制同样会影响植物叶绿素含量[11,12]。干旱胁迫下大麦植株光合效率的降低可能是由于氮、磷、钾和铁元素的缺乏所造成[13],随之而来会造成PSII蛋白脱磷酸化增加,LHCII蛋白(如b4和CP29)快速磷酸化[14]

1.1 干旱胁迫对光系统PSII的影响

与PSII相比,PSⅠ对水分亏缺具有更高的耐受性,只有在极端干旱条件下才会出现负面效应[15,16,17]。对几种生态型椰子(Cocos nucifera L.)进行的试验研究表明,干旱胁迫限制了光能的吸收和PSII的最大量子产率,降低了电子传输速度和羧化效率[18]。同样,在进行性干旱期间,桑树(Morusindica L.)观察到由于非活性RCs的增加、电子传递减少和能量耗散增强而导致的PSII活性降低[19]。在小麦[20,21,22]、橄榄[23]、葡萄[11]以及一些沙漠灌木的叶片中[24,25]也发现了PSII的最大量子产量下降。
在灌木中,还观察到CO2同化减少和电子传输受到抑制[25]。二氧化碳同化减少可能导致PSII光化学活性与NADPH需求之间的不平衡。在这种情况下,活性氧(ROS)的产生增加,这可能是PSII对光破坏敏感性增加的原因[26]。在多数情况下,叶绿素荧光测量表明,通过调整光系统之间的能量分配和激活替代电子流,增强了对PSII和PSI光化学的保护[27,28]

1603329240513090.png

1.2 干旱胁迫和热胁迫的关系

在自然界中,强烈的光照辐射伴随着高温和缺水,可能会发生慢性光抑制[16]。事实上,干旱和高温是影响农业地区作物生长和产量的两大非生物胁迫,众所周知,它们一般同时发生。干旱和热胁迫的联合效应与它们单独作用时观察到的不同,表明这两种应激源以不同的方式影响新陈代谢[29,30,31]
González Cruz和Pastenes证明,与胁迫敏感大豆品种Arroz Tuscola相比,干旱胁迫下的抗逆性大豆品种Orfeo INIA具有更高的耐热性。作者讨论了叶黄素、脂类和脂肪酸成分在提高大豆叶片耐高温性中的可能作用。干旱胁迫下叶片与高温的相互作用对PSII的影响已被广泛研究,普遍表明干旱胁迫下使得叶片PSII的热稳定性增强[31,32,33]
植物的干旱胁迫和热胁迫之间存在拮抗效应。事实上,可能是由于植物在胁迫环境下某些渗透调节物质(如脯氨酸)的积累提高了植物对高温的耐受性[34]。此外,如图1所示,OJIP曲线中K峰消失表明干旱胁迫可能会增强PSII对热胁迫的耐受能力[31]

3.png

1.暗适应条件下大麦OJIP曲线。大麦培育2周后,无水干旱处理2周。对照组和干旱处理组离体叶片45℃热处理10min,适应环境温度5min后,测定叶绿素荧光[31]

1603329324209880.png

2 干旱胁迫对植物OJIP曲线和JIP-test参数的影响

叶绿素荧光JIP-test方法用于检测植物干旱胁迫,可获取植物组织和器官在水分胁迫条件下光合作用过程的重要信息[4,35,36,37]。而目前,水分胁迫对植物光合机构影响导致的荧光参数的变化尚未有统一定论[4,21,22,38]

2.1 L&K峰

JIP-test方法可作为筛选耐旱性基因型作物品种的有效工具[19,39,40,41]。干旱胁迫可以直接或间接影响植物的光合活性,从而改变叶绿素荧光动力学曲线。OJIP曲线2~3ms的荧光上升阶段与原初光化学反应相关,L峰和K峰可作为评价植物耐旱潜力的有力工具[42]。L峰受PSII各组分间能量转移的连通性影响[43]。K峰的出现与放氧复合体(OEC)的解离相关[44]。O-L-K-J-I-P荧光瞬态的测量和JIP-test可作为干旱胁迫出现前耐旱性和生理紊乱的潜在指标。

1603329491560917.png

2.2 性能指数PI(performance index)

性能指数PI是OJIP曲线中为人熟知的一个重要参数,是植物状态和活性的定量参数。PI由三个独立的表达式组成:单位叶绿体活性反应中心的数量,原初光化学反应的有关的表达式和一个与电子传递相关的表达式[45]。因此,PI易受到天线色素活性、捕获效率和电子传递效率发生的任何轻微变化的影响。PI对冬小麦的持续干旱胁迫敏感[46]。根据干旱胁迫下记录的PI值评估的小麦基因型的耐旱性与粮食产量评定的结果高度一致[47]

1603329527135222.png

PI与干旱因子指数(DFI)密切相关,能够显示不同基因型植物对干旱反应的巨大差异。DFI是指在任意干旱胁迫时间内,干旱引起的PI相对降低量。Strauss等人于2006年即运用相似定义CFI(Chill Factor Index)检测不同大豆基因型的耐寒性。DFI还用于10个大麦品种(图2)[42]和21个芝麻突变体种质[48]在干旱胁迫下的特性鉴定。利用性能指数PI和OJIP曲线确定了埃及双色大麦和高粱**耐性和最敏感的地方品种[49]。这些研究证明在PSII水平上区分耐旱品种和敏感品种是可能的。

8.png

2. 10个大麦品种在连续两周干旱胁迫下干旱因子指数(DFI)与驱动力(DF)的关系。每个基因型都由表中代码表示[42]


2.3 I~P相
干旱胁迫对植物光合系统产生许多影响。干旱胁迫下ABS/RC比率的增加[41,50],这可能是由于某些PSII RCs失活或天线尺寸增加所致。RCs的失活是对光抑制敏感的一个指标。这意味着在干旱时期,光化学活动会降低,把吸收的多余的光通过热耗散进行消散。此外干旱胁迫会影响OJIP曲线中I~P相位的相对振幅。I~P相为快速叶绿素荧光上升的最慢阶段(约30~200 ms),与质体篮素PC+和PSⅠ中P700+的还原相关[51,52]。I~P相似乎与通过820nm透射测量的PSⅠ反应中心数量相关[53]。此外已证明,不同大麦品种I~P相振幅的变化与其耐旱性相关[53,54]

2.4 延迟荧光

1603329578486817.png

叶绿素荧光ChlF是在光合样品由暗到光转换后发射的,而延迟荧光则是由光到暗转换期间检测得到[55,56,57]。延迟荧光**由Strehler和Arnold于1951年报道,是由PSII所发射。DF被认为反映了光诱导电荷分离后,还原的初级电子受体QA-与氧化的电子供体P680+的再复合。DF诱导曲线的形状取决于样品类型及其生理状态。同时测量叶绿素Chl a荧光(即时荧光,PF)、延迟荧光DF、在820nm处调制反射MR820和远红光(735nm)反射RR的试验设备已开发出来(Hansatech, M-PEA),可获得不同光合反应的速率常数[56]。如图3,由Golteev等于2013年提出的Σ方案解释了光合电子传递中上述信号的来源[58]。如图4,通过该技术使用M-PEA,Goltsev等于2012年发现干旱胁迫下QA-的再氧化受到抑制,由PSII至QA的电子传递量子产率下降同时OJIP曲线快相部分受到抑制[59]

1603329640996777.png


3. Σ方案解释光合电子传递链中PFDFmr820信号来源[58]

框表示光合结构构件。绿色箭头表示可以测量的物理信号,红色箭头表示根据这些信号重新计算的电子和能量流。信号:DF,延迟荧光;PF,即时荧光;MR,调制反射;RR,远红光(735nm)反射。

电子流:TR,能量俘获;E21PSII天线到PSI的能量迁移(溢出);ED,来自内部供体的水或中间供体(ID)向PSII的电子供应;RE,通过PSINADP的电子流;CE,环式电子流。

RC1*RC2*分别是PSIPSII的反应中心叶绿素,其他缩略语是光合光反应的经典Z方案的标准缩写。

1603329683822954.png

4. JIP-test参数和延迟荧光参数I1/I2,该数据根据1184组不同含水量离体大豆叶片测量[59]
* 雷达图显示了根据不同RWC的叶片计算出的参数。对于每个组,取50片相似RWC的叶片测量值的平均值,并标准化为100%RWC时的值。
I1/I2DF延迟荧光诱导曲线快速阶段延迟荧光最大振幅的比值[60]。雷达图生动地表示了干旱对光合机械的影响。每一个干旱等级都由一个多边形表示,其角点对应于相对(相对于对照全水化叶的值)JIP参数,以及DFI1/I2)诱导曲线上的两个峰值的比值。这个比率I1/I2被发现与PSII中的电子流成反比[61]。光合机构的功能状态可以看作是一个几何图形,其形状是干旱胁迫所特有的。它对不同的干旱程度很敏感,所选参数的雷达图可直接用于RWC的经验预测。

本文内容源自《Emerging Technologies and Management of Crop Stress Tolerance A Sustainable Approach》Volume 2,Edited by Parvaiz Ahmad and Saiema Rasool. 

CHAPTER 15——Kalaji H M ,  Jajoo A ,  Oukarroum A , et al. The Use of Chlorophyll Fluorescence Kinetics Analysis to Study the Performance of Photosynthetic Machinery in Plants[J]. Emerging Technologies and Management of Crop Stress Tolerance, 2014:347-384.

1603329711687432.png

参考文献:

[1] Monteiro,J., Prado, C., 2006. Apparent carboxylation efficiency and relative stomataland mesophyll limitations of photosynthesis in an evergreen cerrado speciesduring water stress. Photosynthetica 44 (1), 39 - 45.

[2] Rampino,P., Pataleo, S., Gerardi, C., Mita, G., Perrotta, C., 2006. Drought stressresponse in wheat: physiological and molecular analysis of resistant andsensitive genotypes. Plant Cell Environ. 29 (12), 2143 - 2152.

[3] Yin, C.,Berninger, F., Li, C., 2006. Photosynthetic responses of Populus przewalskisubjected to drought stress. Photosynthetica 44 (1), 62 - 68.

[4] Hura,T., Grzesiak, S., Hura, K., Thiemt, E., Tokarz, K., We˛dzony, M., 2007.Physiological and biochemical tools useful in drought - tolerance detection ingenotypes of winter triticale: accumulation of ferulic acid correlates withdrought tolerance. Ann. Bot. 100 (4), 767 - 775.

[5] Zhou,Y., Lam, H.M., Zhang, J., 2007. Inhibition of photosynthesis and energydissipation induced by water and high light stresses in rice. J. Exp. Bot. 58(5), 1207 - 1217.

[6] Medrano,H., Escalona, J., Bota, J., Gulias, J., Flexas, J., 2002. Regulation ofphotosynthesis of C3 plants in response to progressive drought: stomatalconductance as a reference parameter. Ann. Bot. 89 (7), 895 - 905.

[7] Chaves,M., Oliveira, M., 2004. Mechanisms underlying plant resilience to waterdeficits: prospects for water - saving agriculture. J. Exp. Bot. 55 (407), 2365- 2384.

[8] Matorin,D., Ortoidze, T., Nikolaev, G., Venediktov, P., Rubin, A., 1982. Effects ofdehydration on electron transport activity in chloroplasts [peas].Photosynthetica 16 (2), 226 - 233.

[9] Cornic,G., Massacci, A., 1996. Leaf photosynthesis under drought stress. In: Baker,N.R. (Ed.), Photosynthesis and the Environment. Kluwer Academic Publishers, pp.347 - 366.

[10] Mullet,J.E., Whitsitt, M.S., 1996. Plant cellular responses to water deficits. PlantGrowth Regulator 20, 119 - 124.

[11] Wright,H., DeLong, J., Lada, R., Prange, R., 2009. The relationship between waterstatus and chlorophyll a fluorescence in grapes (Vitis spp.). Postharvest Biol.Technol. 51 (2), 193 - 199.

[12] Zheng,C., Jiang, D., Liu, F., Dai, T., Jing, Q., Cao, W., 2009. Effects of salt andwaterlogging stresses and their combination on leaf photosynthesis, chloroplastATP synthesis, and antioxidant capacity in wheat. Plant Sci. 176 (4), 575 -582.

[13] Hussein,M.M., Abd El - Kader, A.A., Mona, A.M.S., 2009. Mineral status of plant shootsand grains of barley under foliar fertilization and water stress. Res. J.Agric. Biol. Sci. 5, 108 - 115.

[14] Liu, W.- J., Chen, Y. - E., Tian, W. - J., Du, J. - B., Zhang, Z. - W., Xu, F., etal., 2009. Dephosphorylation of photosystem II proteins and phosphorylation ofCP29 in barley photosynthetic membranes as a response to water stress. Biochim.Biophys. Acta 1787 (10), 1238 - 1245.

[15] VanRensburg, L., Krüger, G.,1993. Differential inhibition of photosynthesis (in vivo and in vitro), andchanges in chlorophyll a fluorescence induction kinetics of four tobaccocultivars under drought stress. J. Plant Physiol. 141 (3), 357 - 365.

[16] Souza,R.P., Machado, E.C., Silva, J.A.B., Lagaa, A.M.M.A.,Silveira, J.A.G., 2004. Photosynthetic gas exchange, chlorophyll fluorescenceand some associated metabolic changes in cowpea (Vigna unguiculata)during water stress and recovery. Environ. Exp. Bot. 51 (1), 45 - 56.

[17] Lauriano,J.A., Ramalho, J.C., Lidon, F.C., C′eu matos, M., 2006. Mechanisms of energydissipation in peanut under water stress. Photosynthetica 44 (3), 404 - 410.

[18] Gomes,F.P., Oliva, M.A., Mielke, M.S., de Almeida, A - AF, Leite, H.G., Aquino, L.A.,2008. Photosynthetic limitations in leaves of young Brazilian Green Dwarfcoconut (Cocos nucifera L. “nana”) palm under well - watered conditions orrecovering from drought stress. Environ. Exp. Bot. 62 (3), 195 - 204.

[19] Guha,A., Sengupta, D., Reddy, A.R., 2013. Polyphasic chlorophyll a fluorescencekinetics and leaf protein analyses to track dynamics of photosyntheticperformance in mulberry during progressive drought. J. Photochem. Photobiol. B,Biol. 119, 71 - 83.

[20] Paknejad,F., Nasri, M., Moghadam, H.R.T., Zahedi, H., Alahmadi, M.J., 2007. Effects ofdrought stress on chlorophyll fluorescence parameters, chlorophyll content andgrain yield of wheat cultivars. J. Biol. Sci. 7, 841 - 847.

[21] Guóth, A.,Tari, I., Gall′e, A′., Csisz′ar, J., Horv′ath, F., P′ecsv′aradi, A., Cseuz, L.,Erdei, L., 2009a. Chlorophyll a fluorescence induction parameters of flagleaves characterize genotypes and not the drought tolerance of wheat duringgrain filling under water deficit. Acta Biol. Szeged. 53, 1 - 7.

[22] Guóth,A., Tari, I., Gall′e, A′., Csisz′ar, J., P′ecsv′aradi, A., Cseuz, L., Erdei,L., 2009b. Comparison of the drought stress responses of tolerant and sensitivewheat cultivars during grain filling: changes in flag leaf photosyntheticactivity, ABA levels, and grain yield. J. Plant Growth Regul. 28 (2), 167 -176.

[23] Sofo,A., Dichio, B., Montanaro, G., Xiloyannis, C., 2009. Photosynthetic performanceand light response of two olive cultivars under different water and lightregimes. Photosynthetica 47 (4), 602 - 608.

[24] Hamerlynck,E.P., Huxman, T.E., 2009. Ecophysiology of two Sonoran Desert evergreen shrubsduring extreme drought. J. Arid Environ. 73 (4 - 5), 582 - 585.

[25] Peeva,V., Cornic, G., 2009. Leaf photosynthesis of Haberlea rhodopensis before andduring drought. Environ. Exp. Bot. 65 (2 - 3), 310 - 318.

[26] Ohashi,Y., Nakayama, N., Saneoka, H., Fujita, K., 2006. Effects of drought stress onphotosynthetic gas exchange, chlorophyll fluorescence and stem diameter ofsoybean plants. Biol. Plant. 50 (1), 138 - 141.

[27] Zivcak,M., Olsovska, K., Brestic, M., Slabbert, M.M., 2013. Critical temperaturederived from the selected chlorophyll a fluorescence parameters of indigenousvegetable species of South Africa treated with high temperature. PhotosynthesisResearch for Food, Fuel and the Future. Springer, Berlin Heidelberg, pp. 628 -632.

[28] Zivcak,M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H.M., etal., 2013. Photosynthetic electron transport and specific photoprotectiveresponses in wheat leaves under drought stress. Photosynth. Res. 117, 529 -546.

[29] Dobra,J., Motyka, V., Dobrev, P., Malbeck, J., Prasil, I.T., Haisel, D., et al.,2010. Comparison of hormonal responses to heat, drought and combined stress intobacco plants with elevated proline content. J. Plant Physiol. 167 (16), 1360- 1370.

[30] Silva,E.N., Ferreira - Silva, S.L., Fontenele, A.d.V., Ribeiro, R.V., Vi′egas, R.A.,Silveira, J.A.G., 2010. Photosynthetic changes and protective mechanismsagainst oxidative damage subjected to isolated and combined drought and heatstresses in Jatropha curcas plants. J. Plant Physiol. 167 (14), 1157 - 1164.

[31] Oukarroum,A., El Madidi, S., Strasser, R., 2012. Exogenous glycine betaine and proline playa protective role in heat - stressed barley leaves (Hordeum vulgare L.): achlorophyll a fluorescence study. Plant Biosyst. 146 (4), 1037 - 1043.

[32] Havaux,M., 1992. Stress tolerance of photosystem II in vivo antagonistic effects ofwater, heat, and photoinhibition stresses. Plant Physiol. 100 (1), 424 - 432.

[33] Lu, C.,Zhang, J., 1999. Effects of water stress on photosystem II photochemistry andits thermostability in wheat plants. J. Exp. Bot. 50 (336), 1199 - 1206.

[34] Ashraf,M., Foolad, M., 2007. Roles of glycine betaine and proline in improving plantabiotic stress resistance.Environ. Exp. Bot. 59 (2), 206 - 216.

[35] Bolhàr -Nordenkampf, H., Ö quist, G., 1993. Chlorophyllfluorescence as a tool in photosynthesis research. In: Hall, D.O., Scurlock,J.M.O., Bolhàr - Nordenkampf, H.R., Leegood, R.C., Long, S.P. (Eds.),Photosynthesis and Production in a Changing Environment: A Field and LaboratoryManual. Chapman and Hall, London, UK, pp. 193 - 206.

[36] Schweiger,J., Lang, M., Lichtenthaler, H.K., 1996. Differences in fluorescence excitationspectra of leaves between stressed and non - stressed plants. J. Plant Physiol.148 (5), 536 - 547.

[37] Yordanov,I., Tsonev, T., Goltsev, V., Kruleva, L., Velikova, V., 1997. Interactiveeffect of water deficit and high temperature on photosynthesis of sunflower andmaize plants. 1. Changes in parameters of chlorophyll fluorescence inductionkinetics and fluorescence quenching. Photosynthetica 33 (3 - 4), 391 - 402.

[38] Munné -Bosch, S., Falara, V., Pateraki, I., Lo′pez - Carbonell, M., Cela, J.,Kanellis, A.K., 2009. Physiological and molecular responses of the isoprenoidbiosynthetic pathway in a drought - resistant Mediterranean shrub, Cistuscreticus exposed to water deficit. J. Plant Physiol. 166 (2), 136 - 145.

[39] VanRensburg, L., Kruger, G., Eggenberg, P., Strasser, R., 1996. Can screeningcriteria for drought resistance in Nicotiana tabacum L be derived from thepolyphasic rise of the chlorophyll a fluorescence transient (OJIP)? S. Afr. J.Bot. 62 (6), 337 - 341.

[40] Oukarroum,A., El Madidi, S., Strasser, R.J., 2006. Drought stress induced in barleycultivars (Hordeurn vulgare L.) by polyethylene glycol, probed bygermination, root length and chlorophyll a fluorescence rise (OJIP). Arch. Sci.59 (1), 65 - 74.

[41] Gomes,M.T.G., da Luz, A.C., dos Santos, M.R., do Carmo Pimentel Batitucci, M., Silva,D.M., Falqueto, A. R., 2012. Drought tolerance of passion fruit plants assessedby the OJIP chlorophyll a fluorescence transient. Sci. Hortic. 142, 49 - 56.

[42] Oukarroum,A., Madidi, S.E., Schansker, G., Strasser, R.J., 2007. Probing the responses ofbarley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescenceOLKJIP under drought stress and re - watering. Environ. Exp. Bot. 60 (3), 438 -446.

[43] Strasser,R.J., Stirbet, A.D., 1998. Heterogeneity of photosystem II probed by thenumerically simulated chlorophyll a fluorescence rise (O - J - I - P). Math.Comput. Simul. 48 (1), 3 - 9.

[44] Guissé,B., Srivastava, A., Strasser, R., 1995. The polyphasic rise of the chlorophylla fluorescence (OKJIP) in heat stressed leaves. Arch. Sci. Geneve 48, 147 -160.

[45] Strasser,R.J., Tsimilli - Michael, M., Srivastava, A., 2004. Analysis of the chlorophylla fluorescence transient. In: Papageorgiou, G., Govindjee (Eds.), Advances inPhotosynthesis and Respiration. Chlorophyll a Fluorescence: A Signature ofPhotosynthesis. Springer, Dordrecht, The Netherlands, pp. 321 - 362.

[46] Zivcak,M., Brestic, M., Olsovska, K., Slamka, P., 2008. Performance Index as asensitive indicator of water stress in Triticum aestivum. Plant Soil Environ.54, 133 - 139.

[47] Zivcak,M., Brestic, M., Olsovska, K., 2008. Physiological parameters useful inscreening for improved tolerance to drought in winter wheat (Triticum aestivumL.). Cereal Res. Commun. 36, 1943 - 1946.

[48] Boureima,S., Oukarroum, A., Diouf, M., Cisse, N., Van Damme, P., 2012. Screening fordrought tolerance in mutant germplasm of sesame (Sesamum indicum) probing bychlorophyll a fluorescence. Environ. Exp. Bot. 81, 37 - 43.

[49] Jedmowski,C., Ashoub, A., Bru¨ggemann, W., 2013. Reactions of Egyptian landraces ofHordeum vulgare and Sorghum bicolor to drought stress, evaluated by the OJIPfluorescence transient analysis. Acta Physiol. Plant. 35 (2), 345 - 354.

[50] VanHeerden, P.D.R., Swanepoel, J.W., Kru¨ger, G.H.J., 2007. Modulation ofphotosynthesis by drought in two desert scrub species exhibiting C3- mode CO2 assimilation. Environ. Exp. Bot. 61 (2), 124 - 136.

[51] Schreiber,U., Neubauer, C., Klughammer, C., 1989. Devices and methods for room -temperature fluorescence analysis. Philos. Trans. R. Soc. Lond., B, Biol. Sci.323 (1216), 241 - 251.

[52] Schansker,G., Srivastava, A., Govindjee, Strasser, R.J., 2003. Characterization of the820 - nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP)in pea leaves. Funct. Plant Biol. 30 (7), 785 - 796.

[53] Ceppi,M.G., Oukarroum, A., C¸ ic¸ek, N., Strasser, R.J., Schansker, G., 2012. The IPamplitude of the fluorescence rise OJIP is sensitive to changes in thephotosystem I content of leaves: a study on plants exposed to magnesium andsulfate deficiencies, drought stress and salt stress. Physiol. Plant. 144 (3),277 - 288.

[54] Oukarroum,A., Schansker, G., Strasser, R.J., 2009. Drought stress effects on photosystemI content and photosystem II thermotolerance analyzed using Chl a fluorescencekinetics in barley varieties differing in their drought tolerance. Physiol.Plant. 137 (2), 188 - 199.

[55] Goltsev,V., Zaharieva, I., Chernev, P., Strasser, R.J., 2009. Delayed chlorophyllfluorescence as a monitor for physiological state of photosynthetic apparatus.Biotechnol. Biotechnol. Equip. 23, 452 - 457 (special edition).

[56] Strasser,R.J., Tsimilli - Michael, M., Qiang, S., Goltsev, V., 2010. Simultaneous invivo recording of prompt and delayed fluorescence and 820 - nm reflectionchanges during drying and after rehydration of the resurrection plant Haberlearhodopensis. Biochim. Biophys. Acta 1797, 1313 - 1326.

[57] Kalaji,H.M., Carpentier, R., Allakhverdiev, S.I., Bosa, K., 2012. Fluorescenceparameters as early indicators of light stress in barley. J. Photochem.Photobiol. B, Biol. 112, 1 - 6.

[58] Goltsev,V., Gurmanova, M., Kouzmanova, M., Yordanov, I., Qiang, S., Pentland, A., etal., 2010. Analysis of dark drops, dark - induced changes in chlorophyllfluorescence during the recording of the OJIP transient. In: Kuang, T., Lu, C.,Zhang, L. (Eds.), Photosynthesis Research for Food, Fuel and Future. Springer -Verlag, Berlin, Heidelberg, pp. 179 - 183.

[59] Goltsev,V., Zaharieva, I., Chernev, P., Kouzmanova, M., Kalaji, H.M., Yordanov, I., etal., 2012. Drought - induced modifications of photosynthetic electron transportin intact leaves: analysis and use of neural net - works as a tool for a rapidnon - invasive estimation. Biochim. Biophys. Acta 1817 (8), 1490 - 1498.

[60] Goltsev,V., Chernev, P., Zaharieva, I., Lambrev, P., Strasser, R.J., 2005. Kinetics ofdelayed chlorophyll a fluorescence registered in milliseconds time range.Photosynth. Res. 84, 209 - 215.

[61] Zaharieva,I., Taneva, S.G., Goltsev, V., 2001. Effect of temperature on the luminescentcharacteristics in leaves of Arabidopsis mutants with decreased unsaturation ofthe membrane lipids. Bulg J. Plant Physiol. 27, 3 - 19.



seo seo